A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens.
نویسندگان
چکیده
Gene silencing through RNA interference (RNAi) has been established as a means of conducting reverse genetic studies. In order to better understand the determinants of short interfering RNA (siRNA) knockdown for use in high-throughput cell-based screens, 148 siRNA duplexes targeting 30 genes within the PI3K pathway were selected and synthesized. The extent of RNA knockdown was measured for 22 genes by quantitative real-time PCR. Analysis of the parameters correlating with effective knockdown showed that (i) duplexes targeting the middle of the coding sequence silenced significantly poorer, (ii) silencing by duplexes targeting the 3'UTR was comparable with duplexes targeting the coding sequence, (iii) pooling of four or five duplexes per gene was remarkably efficient in knocking down gene expression and (iv) among duplexes that achieved a >70% knockdown of the mRNA there were strong nucleotide preferences at specific positions, most notably positions 11 (G or C) and 19 (T) of the siRNA duplex. Finally, in a proof-of-principle pathway-wide cell-based genetic screen, conducted to detect negative genetic regulators of Akt S473 phosphorylation, both known negative regulators of this phosphorylation, PTEN and PDK1, were found. These data help to lay the foundation for genome-wide siRNA screens in mammalian cells.
منابع مشابه
RFRCDB-siRNA: Improved design of siRNAs by random forest regression model coupled with database searching
Although the observations concerning the factors which influence the siRNA efficacy give clues to the mechanism of RNAi, the quantitative prediction of the siRNA efficacy is still a challenge task. In this paper, we introduced a novel non-linear regression method: random forest regression (RFR), to quantitatively estimate siRNAs efficacy values. Compared with an alternative machine learning reg...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملSTUDY OF HMGA2 GENE INHIBITION WITH SPECIFIC SHRNA AND SIRNA AND INVESTIGATION OF CORRESPONDING EFFECTS ON DOWNSTREAM GENE EXPRESSION IN MDA-MB-231 CANCER CELLS: A BIOINFORMATIC AND EXPERIMENTAL STUDY
Background & Aims: The use of siRNA to silence gene expression is increasingly expanding today. The aim of this study is to bioinformatically and experimentally investigate the inhibition of the HMGA2 gene and its corresponding effects on downstream genes expression rate in MDA-MB-231 cancer cell treated by shRNA and siRNA specific to HMGA2. Materials & Methods: To perform this bioinformatic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2004